





# «Progettare garantendo l'invarianza»

Erba, 29 marzo 2019

Relatore: dott.ing. Claudio Merati segretario Ordine Ingegneri Bergamo

## Le nostre parole, il nostro agire

CROIL

CONSULTA REGIONALE ORDINI
INGEGNERI LOMBARDIA

- ✓ Consapevolezza della rilevanza
- ✓ Urgenza
- ✓ Scegliere per tutelare
- ✓ Progettare



## Consapevolezza della rilevanza



L'invarianza idraulica e idrologica NON è per noi tecnici un obbligo imposto ma un obiettivo voluto e ricercato



## Consapevolezza della rilevanza

«Occorre sicuramente porre effettivi paletti alla dissennata politica del consumo di suolo, ma è anche necessario un grande piano di messa in sicurezza del territorio e del patrimonio abitativo dal rischio idrogeologico e da quello sismico»

Armando Zambrano Presidente del Consiglio Nazionale degli Ingegneri 28/1/2014



CONFORMAZIONE GEOMORFOLGICA

+
CONSUMO SUOLO e IMPERMEABILIZZAZIONE

+
DETERIORAMENTE RETICOLO IDRICO

+
INCREMENTO EVENTI ESTREMI

+
AUMENTO URBANIZZATO VULNERABILE

= INCREMENTO COSTANTE DEL RISCHIO



## Consapevolezza della rilevanza

CROIL

CONSULTA REGIONALE ORDINI
INGEGNERI LOMBARDIA

Importanza della normativa in materia di invarianza idraulica, ancor più idrologica, come modalità per non aggravare con interventi edificatori la situazione già compromessa

#### Norme da affiancare a:

- Scelte urbanistiche
- Investimenti per manutenzioni e nuovi interventi di difesa del suolo
- Gestione agraria
- Formazione culturale e ricerca in campo tecnico
- Incremento della resilienza e delle capacità di gestione emergenza



## Urgenza

Importanza della integrale applicazione della normativa regionale in materia di invarianza idraulica e ancor più idrologica, deriva dalla grave situazione di rischio del nostro territorio lombardo.

Auspicio: piena applicazione nel 2020!







#### **OBBLIGO IMPOSTO**

- CONDIZIONA CIO' CHE VORREMMO FARE
- OBBLIGA A ULTERIORI CALCOLI
- AUMENTA I COSTI

#### SCELTA CONDIVISA

- INDIRIZZA CIO' CHE VORREMMO FARE
- SOLLECITA SCELTE PROGETTUALI INNOVATIVE
- MIGLIORA LA QUALITA' DEL NOSTRO LAVORO



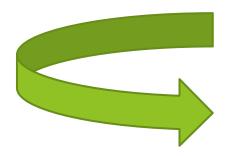




## Recupero del già costruito

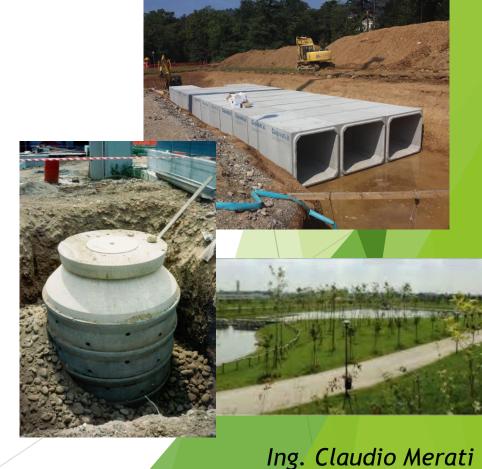
- Valorizzazione edifici storici
- Riqualificazione edificato
- > Mantenimento specificità territoriali
- No consumo di nuovo suolo
- No incremento deflussi acque




### Nuova edificazione innovativa

- Riduzione superfici scolanti
- > Aumento superfici drenanti
- > Coperture verdi, raccolte acque
- Aree a verde con laminazione runoff
- Aumento resilienza edificato

Opere specifiche




> Trincee e pozzi filtranti



Ing Anita Raimondi





## Grazie per l'attenzione.....

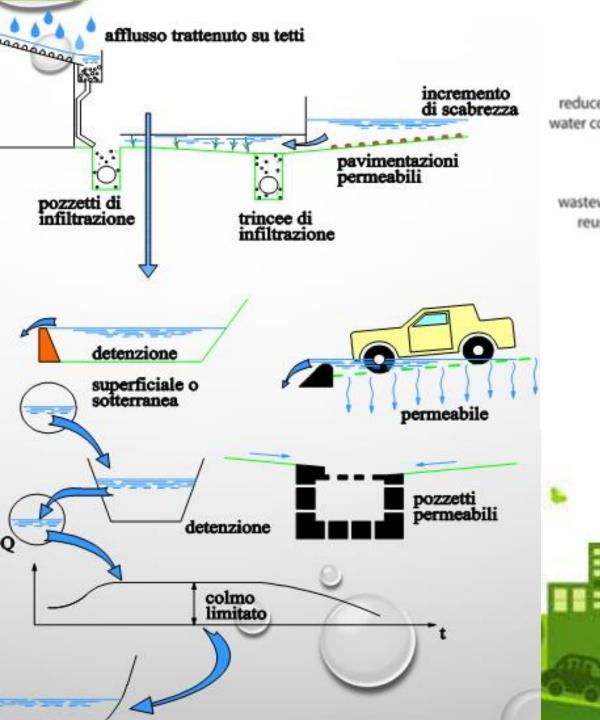
Claudio Merati

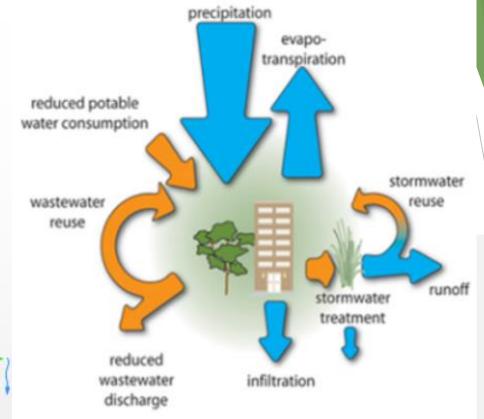




#### Caso studio - Campus Politecnico di Lecco

Calcolo dei volumi di laminazione mediante R.R n°7

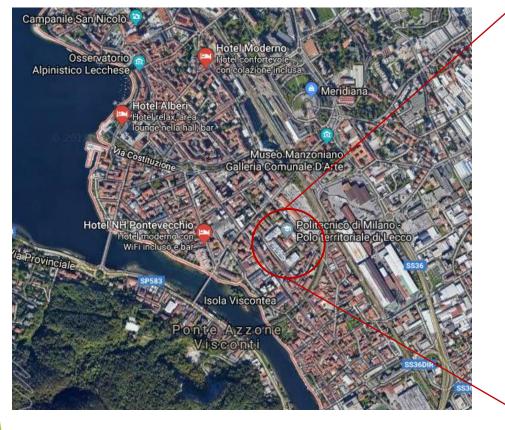

Dimensionamento di un serbatoio per il riuso delle acque meteoriche e di un sistema di infiltrazione

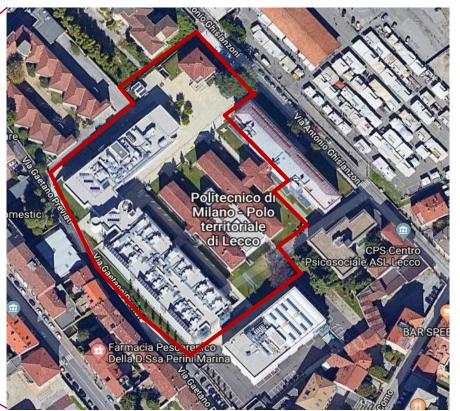

Erba, 29 marzo 2019

Relatore: Ing. Anita Raimondi, PhD

Politecnico di Milano








SISTEMI DI
DRENAGGIO
URBANO
SOSTENIBILE











Superficie complessiva: A<sub>tot</sub>=12.645 m<sup>2</sup>

Area impermeabile: 9.520 m<sup>2</sup> (75,3 %)  $\rightarrow$   $\phi$ =1 [-]

Area semipermeabile: 475 m<sup>2</sup> (3,7 %)  $\rightarrow$   $\phi$ =0,7 [-]

Area permeabile: 2.650 m<sup>2</sup> (21 %)  $\rightarrow$   $\phi$ =0,3 [-]

Coefficiente di afflusso medio ponderale:  $\phi_{mp}$ =0,84 [-]

Lecco: Area C, a bassa criticità

#### PORTATA MASSIMA AMMISSIBILE ALLO SCARICO:

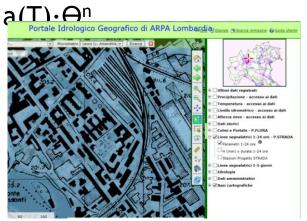
u<sub>lim</sub>=20 l/s per ettaro di superficie scolante impermeabile

|      | MILECCO.                     | Legenda Comuni ad alta Comuni a media Comuni a bassa | criticità (B) |
|------|------------------------------|------------------------------------------------------|---------------|
| erri | oriali e modalità di calcolo |                                                      |               |
|      |                              |                                                      |               |

|  |                      | Classe di internenta                         | Superficie di Coefficiente di deflus                                          |                                     | Ambiti territoriali e               | modalità di calcolo            |
|--|----------------------|----------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------|-------------------------------------|--------------------------------|
|  | Classe di intervento |                                              | trasformazione (Atot)                                                         | medio ponderale ( $\varphi$ mp)     | Aree A e B                          | Aree C                         |
|  | 0                    | Impermeabilizzazione<br>potenziale qualsiasi | $\begin{array}{l} A_{tot} \leq 0.01  ha \\ A_{tot} \leq 100  m^2 \end{array}$ | Qualsiasi                           | Requisiti minimi<br>criticità C     |                                |
|  | 1                    | Impermeabilizzazione<br>potenziale bassa     | 0.01< A <sub>tot</sub> ≤0.1 ha<br>100< A <sub>tot</sub> ≤1000 m <sup>2</sup>  | ≤0.4                                | Requisiti min                       | imi (Par. 3.5)                 |
|  |                      |                                              | $0.01 < A_{tot} \le 0.1 \text{ ha}$<br>$100 < A_{tot} \le 1000 \text{ m}^2$   | >0.4                                |                                     |                                |
|  | 2                    | Impermeabilizzazione<br>potenziale media     | $0.1 < A_{tot} \le 1 \text{ ha}$<br>$1000 < A_{tot} \le 10000 \text{ m}^2$    | Qualsiasi                           | Metodo delle sole piogge (Par. 4.2) |                                |
|  |                      |                                              | $1 < A_{tot} \le 10 \text{ ha}$<br>$10000 < A_{tot} \le 100000 \text{ m}^2$   | ≤0.4                                |                                     | Requisiti minimi<br>(Par. 3.5) |
|  | 3                    | Impermeabilizzazione potenziale alta         | >0.4                                                                          | Procedura di<br>calcolo dettagliata |                                     |                                |
|  | J                    |                                              | $A_{tot} > 10 \text{ ha}$<br>$A_{tot} > 100000 \text{ m}^2$                   |                                     | (Par.4.4)                           |                                |

#### **REQUISITI MINIMI:**

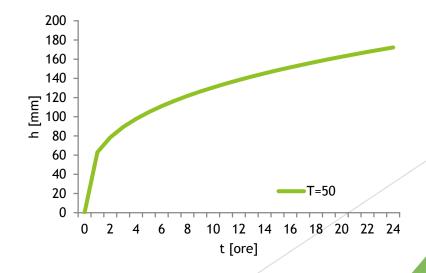
w<sub>0</sub>=400 m<sup>3</sup> per ettaro di superficie scolante impermeabile


Ing. Anita Raimondi, PhD

#### **REQUISITI MINIMI:**

$$W_0 = W_0 \cdot A_{tot} \cdot \phi_{mp} = 425,9 \text{ m}^3$$

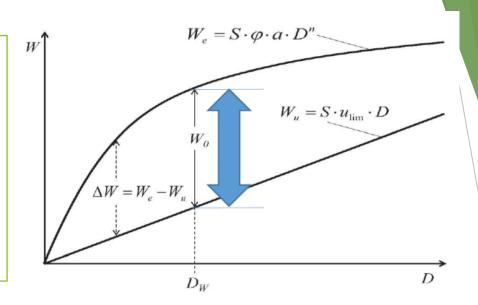
$$Q_{lim} = u_{lim} \cdot A_{tot} \cdot \phi_{mp} = 21,30 \text{ l/s}$$


#### CURVA DI POSSIBILITA' PLUVIOMETRICA: $h(\Theta,T) = w_T(T) \cdot a_1 \cdot \Theta^n =$



T=50 anni 
$$\longrightarrow$$
 n = 0,34 [-]  
a = 63,05 [mm/ora<sup>n</sup>]

Parametri 1-24 ore


| Parametro                             | Valore        |
|---------------------------------------|---------------|
|                                       |               |
| A1 - Coefficente pluviometrico orario | 31.24         |
| N - Coefficente di scala              | 0.31619999    |
| GEV - parametro alpha                 | 0.30309999    |
| GEV - parametro kappa                 | -0.0054000001 |
| GEV - parametro epsilon               | 0.82309997    |



#### **METODO DELLE SOLE PIOGGE:**

$$\Theta_{W} = \left(\frac{Q_{,lim}}{A_{tot} \cdot \phi_{mp} \cdot a \cdot n}\right)^{\frac{1}{n-1}} = 4,44 \text{ ore}$$

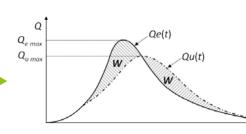
$$W_0 = A_{tot} \cdot \phi_{mp} \cdot a \cdot \Theta_w^n - Q_{lim} \cdot \Theta_w = 735,2 \text{ m}^3$$



#### PROCEDURA DETTAGLIATA:

Curve di possibilità pluviometrica letogramma di progetto

Calcolo perdite idrologiche letogramma netto di pioggia


Trasformazione afflussi-deflussi Idrogramma di piena

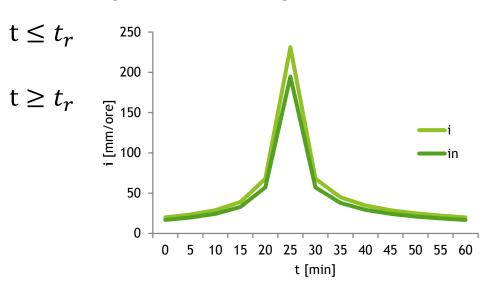
Processo di laminazione - Calcolo volume

letogramma Chicago

Metodo percentuale

Metodo della corrivazione




Ing. Anita Raimondi, PhD

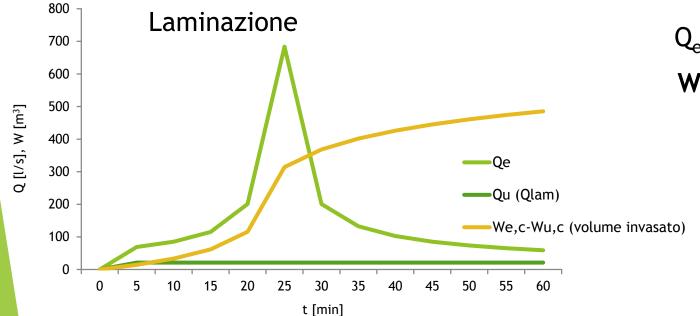
#### letrogramma Chicago

$$i(t) = n \cdot a \cdot \left(\frac{t_r - t}{r}\right)^{n-1} \qquad t \le t_r$$

$$i(t) = n \cdot a \cdot \left(\frac{t - t_r}{1 - r}\right)^{n-1} \qquad t \ge t_r$$

$$T_r = r \cdot \theta$$




#### Metodo della corrivazione

$$q_k = \sum_{j=1}^k p_j \cdot IUH_{k-j+1} \cdot \Delta t$$

$$p_j = i_j \cdot \phi_{mp} \cdot A_{tot}$$

IUH=
$$1/T_0$$
 per  $t \le T_0$ 

$$T_0=5$$
 min  $\Delta t=5$  min



| $Q_e(t)-Q_u(t)=dW(t)/dt$  |
|---------------------------|
| $W_0 = 562,7 \text{ m}^3$ |

| METODOLOGIA DI CALCOLO   | $W_0$ [m $^3$ ] |
|--------------------------|-----------------|
| Requisiti minimi         | 426             |
| Metodo delle sole piogge | 735             |
| Procedura dettagliata    | 563             |

#### **SVUOTAMENTO DEI VOLUMI DI LAMINAZIONE:**

A) RIUSO



C) SCARICO IN CORPO IDRICO



B) INFILTRAZIONE



D) SCARICO IN FOGNATURA





| STATO DI                                  | FATTO |                          |
|-------------------------------------------|-------|--------------------------|
| A <sub>vasca</sub> [m <sup>2</sup> ]      | 3.235 | > S = 260 m <sup>3</sup> |
| $A_{pozzi}$ [m <sup>2</sup> ]             | 4.548 |                          |
| A <sub>fognatura</sub> [m <sup>2</sup> ]  | 1.739 |                          |
| A <sub>infiltrate</sub> [m <sup>2</sup> ] | 3.123 |                          |

#### Vasca per riuso



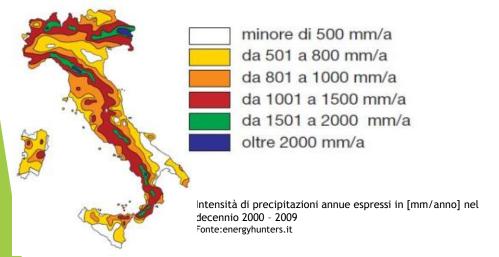
 $A = 3.235 \text{ m}^2$ 

| $A = 3.235 [m^2]$        | $W_0$ [m <sup>3</sup> ] |
|--------------------------|-------------------------|
| Requisiti minimi         | 129                     |
| Metodo delle sole piogge | 223                     |
| Procedura dettagliata    | 171                     |

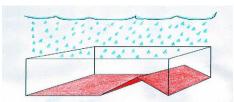
#### Bacino di infiltrazione

 $A = 1.739 \text{ m}^2$ 

territoriale di Lecco


| $A = 1.739 [m^2]$        | $W_0$ [m <sup>3</sup> ] |
|--------------------------|-------------------------|
| Requisiti minimi         | 70                      |
| Metodo delle sole piogge | 120                     |
| Procedura dettagliata    | 92                      |
|                          |                         |

 $A_{I,2D} = 375 \text{ m}^2$ 


#### Dimensionamento del SERBATOIO di raccolta delle acque meteoriche

#### Valutare la disponibilità di acqua

#### Regime pluviometrico



#### Superficie di captazione



## Valutare la richiesta di acqua in termini di consumo

#### Tipo di utilizzo



#### METODO SEMPLIFICATO NORMATIVA ITALIANA (UNI/TS 11445:2012)

$$V_U = min \begin{cases} 0.06 \cdot F_{cum} \\ 0.06 \cdot D_{cum} \end{cases} \qquad \longrightarrow \qquad S = V_U \cdot 1.5$$

 $F_{cum}$ : afflusso meteorico annuo effettivo

 $D_{cum}$ : richiesta totale annua di acqua piovana

- Richiesta per uso non domestico potabile uniforme nel corso dell'anno
- Impianti di piccole e medie dimensioni
- Sistema di accumulo chiuso e/o coperto senza perdite per evaporazione

$$F_{cum} = \sum F_t$$

$$F_t = \varphi \cdot A \cdot (h - IA) \cdot 0.9$$

IA: Initial Abstraction = 2 mm

$$D_{cum} = \sum r_d \cdot P + \sum r_I \cdot G$$

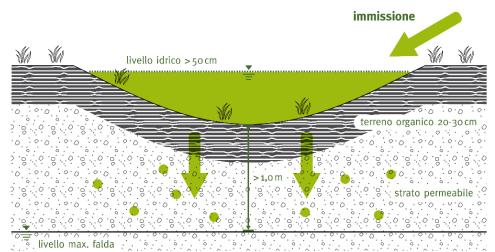
| LOMBARDIA                                         |
|---------------------------------------------------|
| Agenzia Regionale per la Protezione dell'Ambiente |
|                                                   |

Periodo di studio: 1/01/2000-31/12/2017

| MESE      | t [mesi] | h [mm] | F [m <sup>3</sup> ] |
|-----------|----------|--------|---------------------|
| Gennaio   | 1        | 56     | 158                 |
| Febbraio  | 2        | 77     | 377                 |
| Marzo     | 3        | 71     | 578                 |
| Aprile    | 4        | 108    | 886                 |
| Maggio    | 5        | 148    | 1.310               |
| Giugno    | 6        | 120    | 1.652               |
| Luglio    | 7        | 125    | 2.011               |
| Agosto    | 8        | 117    | 2.346               |
| Settembre | 9        | 104    | 2.643               |
| Ottobre   | 10       | 114    | 2.968               |
| Novembre  | 11       | 140    | 3.370               |
| Dicembre  | 12       | 72     | 3.572               |
|           |          |        |                     |

| Fabbisogno indoor     |                 |        |          |                        |  |
|-----------------------|-----------------|--------|----------|------------------------|--|
| Periodo Consumo annuo |                 |        |          |                        |  |
| UTENZA                | l/(ab·giorno)   | P [ab] | [giorni] | Σr <sub>d</sub> [l/ab] |  |
| WC                    | 30              | 400    | 200      | 6.000                  |  |
| Richiesta di          | acqua ∑rd ∙P [m |        | 2.400    |                        |  |




| Fabbisogno outdoor                                       |                                          |                     |          |  |  |
|----------------------------------------------------------|------------------------------------------|---------------------|----------|--|--|
| UTENZA                                                   | UTENZA Consumo annuo Superficie irrigata |                     |          |  |  |
|                                                          | Σr₁ [l/(m²·anno)]                        | G [m <sup>2</sup> ] | [giorni] |  |  |
| IRRIGAZIONE                                              | 300                                      | 3.125               | 183      |  |  |
| Richiesta di acqua piovana a uso irriguo ∑rl·G [m³/anno] |                                          |                     |          |  |  |



$$V_U = min \begin{cases} 0.06 \cdot 3.572 = 214 \ [m^3] \\ 0.06 \cdot 2.870 = 172 \ [m^3] \end{cases}$$
  $S = 1.5 \cdot 172 = 258 \ [m^3]$ 

#### Dimensionamento del BACINO DI INFILTRAZIONE

 $A_{I,2D} = 375 \text{ m}^2$ 





| A [m <sup>2</sup> ]          | 1.739 |
|------------------------------|-------|
| $A_{I,2D}$ [m <sup>2</sup> ] | 375   |
| R <sub>A,2D</sub> [-]        | 4,6   |

| Tipo di terreno | Tasso di infiltrazione medio (I <sub>N</sub> ) [mm/ora] |
|-----------------|---------------------------------------------------------|
| Sabbia          | >180                                                    |
| Argilla 10-30%  | 36-180                                                  |
| Argilla≈50%     | da 3,6 a 36                                             |
| Argilla>50%     | da 0,036 a 3,6                                          |

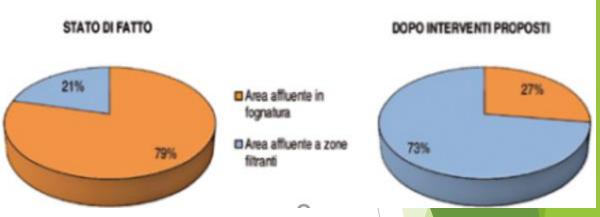
| Materiale di riempimento   | Porosità (p) [-] |  |  |
|----------------------------|------------------|--|--|
| Sistema geocellulare       | 0,9-0,95         |  |  |
| Pietra pulita              | 0,4-0,5          |  |  |
| Ghiaia uniforme            | 0,3-0,4          |  |  |
| Sabbia o ghiaia di diversa | 0202             |  |  |
| granulometria              | 0,2-0,3          |  |  |

| T= 5 [anni]              | ⊖<⊖*  | ⊖≥⊖*  |
|--------------------------|-------|-------|
| a [mm/ora <sup>n</sup> ] | 34,54 | 34,54 |
| n [-]                    | 0,5   | 0,32  |

Vincoli di progetto 
$$t_{sv} < 5-6 \ m$$

$$h_{max} = h(\theta_{max})$$

$$\theta_{max} = \left(\frac{I_n}{n \cdot a(T) \cdot R_A}\right)^{\frac{1}{n-1}}$$


$$t_{sv,2D} = \frac{p \cdot h_{max,2D}}{I_N}$$

$$h = \frac{\theta}{p} \cdot (I_R \cdot R_A - I_N)$$

$$I_R = a(T) \cdot \theta^{n-1}$$

| CASI STUDIO  |                 | $A_{1.2D} = 375 \text{ [m}^2\text{]}$ |                      | $A_{1.2D} = 94 [m^2]$ |                      |                       |          |
|--------------|-----------------|---------------------------------------|----------------------|-----------------------|----------------------|-----------------------|----------|
|              | Tipo di terreno | I <sub>N</sub> [mm/ora]               | h <sub>max</sub> [m] | t <sub>sv</sub> [ore] | h <sub>max</sub> [m] | t <sub>sv</sub> [ore] |          |
|              | Sabbia          | 180                                   | 0,07-0,24            | 0,3                   | 0,5-1,8              | 3                     | 1        |
|              | Argilla 50%     | 108                                   | 0,09-0,3             | 0,7                   | 0,6-2,3              | 5                     | <b>√</b> |
|              | Arailla > 50%   | 20                                    | 0,2-0,67             | 8,4                   | 1,4-5,1              | 64                    |          |
| Argilla >50% | 10              | 0,3-0,9                               | 23,2                 | 1,9-7                 | 176                  |                       |          |





## Grazie per l'attenzione!!!

Anita Raimondi